指數常用公式
① 所有指數對數函數計算公式
指數計算公式:
①
(1)指數常用公式擴展閱讀:
指數函數基本性質:
1、 指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函數的定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。
2、指數函數的值域為(0, +∞)。
3、 函數圖形都是上凹的。
4、a>1時,則指數函數單調遞增;若0<a<1,則為單調遞減的
② 指數函數公式
^指數函數有兩種寫法:1. POWER(2,3)=82. 2^3=8 (^ 6上面那個符號)
指數函數是重要的基本初等函數之一。一般地,y=a^x函數(a為常數且以a>0,a≠1)叫做指數函數,函數的定義域是 R 。
自變數在指數位置的函數就是指數函數,如y=a^x,a﹥0且系數為1,x∈R,y(0,+∞)
①如果a=0,那麼指數x≠0的時候,函數值等於1,x=0的時候,函數式無意義。
②如果a<0,那麼a的x次方這個冪將不連續,且出現無法確定是否有意義的不定點。因為負數不能開偶數次方,所以當x是最簡分數的時候,分母為偶數的指數將使得a的x次方無意義。
所以只能研究a大於0的情況下的指數函數。
③ 指數運演算法則
指數函數指數函數的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函數圖形的情況。 在函數y=a^x中可以看到: (1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。 (2) 指數函數的值域為大於0的實數集合。 (3) 函數圖形都是下凹的。 (4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。 (5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6) 函數總是在某一個方向上無限趨向於X軸,永不相交。 (7) 函數總是通過(0,1)這點 (8) 顯然指數函數無界。 (9) 指數函數既不是奇函數也不是偶函數。 (10)當兩個指數函數中的a互為倒數是,此函數圖像是偶函數。 例1:下列函數在R上是增函數還是減函數?說明理由. ⑴y=4^x 因為4>1,所以y=4^x在R上是增函數; ⑵y=(1/4)^x 因為0<1/4<1,所以y=(1/4)^x在R上是減函數1對數的概念 如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底數,N叫做真數. 由定義知: ①負數和零沒有對數; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特別地,以10為底的對數叫常用對數,記作log10N,簡記為lgN;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logeN,簡記為lnN. 2對數式與指數式的互化 式子名稱abN指數式ab=N(底數)(指數)(冪值)對數式logaN=b(底數)(對數)(真數) 3對數的運算性質 如果a>0,a≠1,M>0,N>0,那麼 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R).
有理數的指數冪,運演算法則要記住。
指數加減底不變,同底數冪相乘除。
指數相乘底不變,冪的乘方要清楚。
積商乘方原指數,換底乘方再乘除。
非零數的零次冪,常值為 1不糊塗。
負整數的指數冪,指數轉正求倒數。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
④ 指數運算八個常用公式
當然是先算2∧3,然後再2∧8了,沒有括弧肯定是先指數,後整體!我數學系的,記得賞分拿來!!
⑤ 對數和指數的公式
如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底版數,N叫做真權數.
由定義知:
①負數和零沒有對數;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特別地,以10為底的對數叫常用對數,記作log10N,簡記為lgN;以無理數e(e=2.718
28…)為底的對數叫做自然對數,記作logeN,簡記為lnN.
2對數式與指數式的互化
麻煩採納,謝謝!
⑥ 指數函數的公式都有哪些
指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為e,這里的e是數學常數,就是自然對數的底數,近似等於 2.718281828,還稱為歐拉數。
當a>1時,指數函數對於x的負數值非常平坦,對於x的正數值迅速攀升,在 x等於 0 的時候,y等於1。當0<1時,指數函數對於x的負數值迅速攀升,對於x的正數值非常平坦,在x等於 0 的時候,y等於1。在x處的切線的斜率等於此處y的值乘上lna。
⑦ 指數函數都有哪些計算公式和性質。
(1) 指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然回使得函數的答定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。
(2) 指數函數的值域為R+。
(3) 函數圖形都是上凹的。
(4) a>1時,則指數函數單調遞增;若0<a<1,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過
指數函數
程中(不等於0)函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數總是在某一個方向上無限趨向於X軸,並且永不相交。
(7) 函數總是通過(0,1)這點,(若 ,則函數定過點(0,1+b))
(8) 指數函數無界。
(9)指數函數是非奇非偶函數
(10)指數函數具有反函數,其反函數是對數函數,它是一個多值函數。
⑧ 指數的基本公式
指數運算公復式?
是不是(1)同底數冪相制乘,底數不變,指數相加
(2)同指數冪相乘,指數不變,底數相加
除法類同
不要死記公式,不會自己推一下就可以
可能是我知識水平不高,我好想沒聽說過『指數運算公式』。
⑨ 指數運算公式
1、
(9)指數常用公式擴展閱讀:
指數的發展歷程:
指數與冪的概念的形成是相當曲折和緩慢的指數符號( Sign of power) 的種類繁多,且記法多樣化。
我國古代「冪」字至少有十各不同的寫法。
劉徽為《九章算術》作注,在《方田》章求矩形面積法則中寫道:「此積謂田冪,凡廣從相乘謂之冪( 長和寬相乘的積叫作冪) 。」這是第一次在數學文獻上出現冪。
1607 年,利瑪竇和徐光啟合譯歐幾里得的 《幾何原本》,在譯本中徐光啟重新使用了冪字,並有註解:「自乘之數曰冪。」這是第一次給冪這個概念下定義。
至十七世紀,具有「現代」意義的指數符號才出現。