指數運算6
『壹』 指數計算 求0.6右上方指數是0.7怎麼算 如何用計算器算10次方根啊
(0.6)^0.7=0.6^(7/10)=0.6的七次方再開十次方根
要用計算器
『貳』 指數運演算法則
指數函數指數函數的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函數圖形的情況。 在函數y=a^x中可以看到: (1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。 (2) 指數函數的值域為大於0的實數集合。 (3) 函數圖形都是下凹的。 (4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。 (5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6) 函數總是在某一個方向上無限趨向於X軸,永不相交。 (7) 函數總是通過(0,1)這點 (8) 顯然指數函數無界。 (9) 指數函數既不是奇函數也不是偶函數。 (10)當兩個指數函數中的a互為倒數是,此函數圖像是偶函數。 例1:下列函數在R上是增函數還是減函數?說明理由. ⑴y=4^x 因為4>1,所以y=4^x在R上是增函數; ⑵y=(1/4)^x 因為0<1/4<1,所以y=(1/4)^x在R上是減函數1對數的概念 如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底數,N叫做真數. 由定義知: ①負數和零沒有對數; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特別地,以10為底的對數叫常用對數,記作log10N,簡記為lgN;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logeN,簡記為lnN. 2對數式與指數式的互化 式子名稱abN指數式ab=N(底數)(指數)(冪值)對數式logaN=b(底數)(對數)(真數) 3對數的運算性質 如果a>0,a≠1,M>0,N>0,那麼 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R).
有理數的指數冪,運演算法則要記住。
指數加減底不變,同底數冪相乘除。
指數相乘底不變,冪的乘方要清楚。
積商乘方原指數,換底乘方再乘除。
非零數的零次冪,常值為 1不糊塗。
負整數的指數冪,指數轉正求倒數。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
『叄』 5多少冪次方等於6
用對數,
設x冪次方,則
5^x=6
則x=log(5)
6
即x等於以5為底6的對數
∴5的以5為底6的對數冪次方等於6
『肆』 處理器指數6什麼意思
核心數量
『伍』 VB6怎麼進行指數運算
2^3 = 8 用^符號
『陸』 -6的-3次冪是多少 請些得詳細一點.
-6的-3次冪
=1/(-6)^3
=-1/6^3
=-1/216
『柒』 指數的運演算法則
有理數的指數冪,運演算法則要記住。
指數加減底不變,同底數冪相乘除。
//a^(n+m)=(a^n)×(a^m)
如:6^(2+3)=(6^2)×(6^3)
指數相乘底不變,冪的乘方要清楚。
//a^(n×m)=(a^n)^m
如:6^(2×3)=(6^2)^3
積商乘方原指數,換底乘方再乘除。
//(a×b)^n=(a^n)×(b^n)
如:(6×7)^2=(6^2)×(7^2)
非零數的零次冪,常值為
1不糊塗。
//a^o=1
(a≠0)
如:6^0=1,7^0=1,....
負整數的指數冪,指數轉正求倒數。
//a^(-n)=1/(a^n)
如:6^(-2)=1/(6^2)
看到分數指數冪,想到底數必非負。
乘方指數是分子,根指數要當分母。
//n√(a^m)=a^(m/n)
如:4√(9^2)=9^(2/4),
8的1/3次冪=2
註:
^
為數學符號(幾的幾次方),如
2的3次方=2^3=8
『捌』 數學次方的運算,這個怎麼快速的算出n=6話說這個次方是不是叫做「指數」
如果常見數的幾次方記得的話,直接就解出來了。不記得的話就解729是由幾個三組成。
指數:冪運算a的n次方中的一個參數,a為底數,n為指數,指數位於底數的右上角。
『玖』 指數運算
指數函數的一般形式為y=a^x(a>0且≠1) (x∈R). 它是初等函數中的一種。它是定義在實數域上的單調、下凸、無上界的可微正值函數。
(1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮,
同時a等於0函數無意義一般也不考慮。
(2) 指數函數的值域為大於0的實數集合。
(3) 函數圖形都是下凸的。
(4) a大於1時,則指數函數單調遞增;若a小於1大於0,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過
[指數函數]
指數函數
程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數總是在某一個方向上無限趨向於X軸,並且永不相交。
(7) 函數總是通過(0,1)這點,(若y=a^x+b,則函數定過點(0,1+b)
(8) 顯然指數函數無界。
(9) 指數函數既不是奇函數也不是偶函數。
(10)當兩個指數函數中的a互為倒數時,兩個函數關於y軸對稱,但這兩個函數都不具有奇偶性。
(11)當指數函數中的自變數與因變數一一映射時,指數函數具有反函數。
(1)由指數函數y=a^x與直線x=1相交於點(1,a)可知:在y軸右側,圖像從下到上相應的底數由小變大。
(2)由指數函數y=a^x與直線x=-1相交於點(-1,1/a)可知:在y軸左側,圖像從下到上相應的底數由大變小。
(3)指數函數的底數與圖像間的關系可概括的記憶為:在y軸右邊「底大圖高」;在y軸左邊「底大圖低」