二叉樹模型美式期權
1. 美式期權二叉樹問題
第3期:0、0、10.9、27.1;第2期:0、2.53、19;第1期:0.59、10;第0期:2.74 等級沒到,不讓截圖,希望看得懂。順序是從上到下
2. 美式看漲期權二叉樹可以提前執行嗎
美式期權與歐式期權的區別就在於它能提前執行,而二叉樹圖純粹是一種估值方法,不存在能不能提前執行的問題。
只是一般來說美式看漲期權最好不要提前執行,所以才能用二叉樹圖來「大概」估值。
希望能幫到你。
3. 期權定價模型中的二叉樹模型裡面有個數字不懂如何來的
二項期權定價模型假設股價波動只有向上和向下兩個方向,且假設在整個考察期內,股價每次向上(或向下)波動的概率和幅度不變。模型將考察的存續期分為若干階段,根據股價的歷史波動率模擬出正股在整個存續期內所有可能的發展路徑,並對每一路徑上的每一節點計算權證行權收益和用貼現法計算出的權證價格。對於美式權證,由於可以提前行權,每一節點上權證的理論價格應為權證行權收益和貼現計算出的權證價格兩者較大者。
構建二項式期權定價模型
編輯
1973年,布萊克和舒爾斯(Black and Scholes)提出了Black-Scholes期權定價模型,對標的資產的價格服從對數正態分布的期權進行定價。隨後,羅斯開始研究標的資產的價格服從非正態分布的期權定價理論。1976年,羅斯和約翰·考科斯(John Cox)在《金融經濟學雜志》上發表論文「基於另類隨機過程的期權定價」,提出了風險中性定價理論。
1979年,羅斯、考科斯和馬克·魯賓斯坦(Mark Rubinstein)在《金融經濟學雜志》上發表論文「期權定價:一種簡化的方法」,該文提出了一種簡單的對離散時間的期權的定價方法,被稱為Cox-Ross-Rubinstein二項式期權定價模型。
二項式期權定價模型和布萊克-休爾斯期權定價模型,是兩種相互補充的方法。二項式期權定價模型推導比較簡單,更適合說明期權定價的基本概念。二項式期權定價模型建立在一個基本假設基礎上,即在給定的時間間隔內,證券的價格運動有兩個可能的方向:上漲或者下跌。雖然這一假設非常簡單,但由於可以把一個給定的時間段細分為更小的時間單位,因而二項式期權定價模型適用於處理更為復雜的期權。
隨著要考慮的價格變動數目的增加,二項式期權定價模型的分布函數就越來越趨向於正態分布,二項式期權定價模型和布萊克-休爾斯期權定價模型相一致。二項式期權定價模型的優點,是簡化了期權定價的計算並增加了直觀性,因此現在已成為全世界各大證券交易所的主要定價標准之一。
一般來說,二項期權定價模型的基本假設是在每一時期股價的變動方向只有兩個,即上升或下降。BOPM的定價依據是在期權在第一次買進時,能建立起一個零風險套頭交易,或者說可以使用一個證券組合來模擬期權的價值,該證券組合在沒有套利機會時應等於買權的價 格;反之,如果存在套利機會,投資者則可以買兩種產品種價格便宜者,賣出價格較高者,從而獲得無風險收益,當然這種套利機會只會在極短的時間里存在。這一 證券組合的主要功能是給出了買權的定價方法。與期貨不同的是,期貨的套頭交易一旦建立就不用改變,而期權的套頭交易則需不斷調整,直至期權到期。
二叉樹思想
編輯
1:Black-Scholes方程模型優缺點:
優點:對歐式期權,有精確的定價公式;
缺點:對美式期權,無精確的定價公式,不可能求出解的表達式,而且數學推導和求解過程在金融界較難接受和掌握。
2:思想:
假定到期且只有兩種可能,而且漲跌幅均為10%的假設都很粗略。修改為:在T分為狠多小的時間間隔Δt,而在每一個Δt,股票價格變化由S到Su或Sd。如果價格上揚概率為p,那麼下跌的概率為1-p。
3:u,p,d的確定:
由Black-Scholes方程告訴我們:可以假定市場為風險中性。即股票預期收益率μ等於無風險利率r,故有:
SerΔt = pSu + (1 − p)Sd(23)
即:e^{r\Delta t}=pu+(1-p)d=E(S)(24)
又因股票價格變化符合布朗運動,從而 δS N(rSΔt,σS√Δt)(25)
=>D(S) = σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 + (1 − p)(d)2 − [pu + (1 − p)d]2(26)
又因為股價的上揚和下跌應滿足:ud=1(27)
由(24),(26),(27)可解得:
其中:a = erδt。
4:結論:
在相等的充分小的Δt時段內,無論開始時股票價格如何。由(28)~(31)所確定的u,d和p都是常數。(即只與Δt,σ,r有關,而與S無關)。
4. 求助,美式期權二叉樹定價方法如何求Vega和rho
二項期權定價模型假設股價波動只有向上和向下兩個方向,且假設在整個考察期內,股價每次向上(或向下)波動的概率和幅度不變。模型將考察的存續期分為若干階段,根據股價的歷史波動率模擬出正股在整個存續期內所有可能的發展路徑,並對每一路徑上的每一節點計算權證行權收益和用貼現法計算出的權證價格。對於美式權證,由於可以提前行權,每一節點上權證的理論價格應為權證行權收益和貼現計算出的權證價格兩者較大者。構建二項式期權定價模型編輯1973年,布萊克和舒爾斯(BlackandScholes)提出了Black-Scholes期權定價模型,對標的資產的價格服從對數正態分布的期權進行定價。隨後,羅斯開始研究標的資產的價格服從非正態分布的期權定價理論。1976年,羅斯和約翰·考科斯(JohnCox)在《金融經濟學雜志》上發表論文「基於另類隨機過程的期權定價」,提出了風險中性定價理論。1979年,羅斯、考科斯和馬克·魯賓斯坦(MarkRubinstein)在《金融經濟學雜志》上發表論文「期權定價:一種簡化的方法」,該文提出了一種簡單的對離散時間的期權的定價方法,被稱為Cox-Ross-Rubinstein二項式期權定價模型。二項式期權定價模型和布萊克-休爾斯期權定價模型,是兩種相互補充的方法。二項式期權定價模型推導比較簡單,更適合說明期權定價的基本概念。二項式期權定價模型建立在一個基本假設基礎上,即在給定的時間間隔內,證券的價格運動有兩個可能的方向:上漲或者下跌。雖然這一假設非常簡單,但由於可以把一個給定的時間段細分為更小的時間單位,因而二項式期權定價模型適用於處理更為復雜的期權。隨著要考慮的價格變動數目的增加,二項式期權定價模型的分布函數就越來越趨向於正態分布,二項式期權定價模型和布萊克-休爾斯期權定價模型相一致。二項式期權定價模型的優點,是簡化了期權定價的計算並增加了直觀性,因此現在已成為全世界各大證券交易所的主要定價標准之一。一般來說,二項期權定價模型的基本假設是在每一時期股價的變動方向只有兩個,即上升或下降。BOPM的定價依據是在期權在第一次買進時,能建立起一個零風險套頭交易,或者說可以使用一個證券組合來模擬期權的價值,該證券組合在沒有套利機會時應等於買權的價格;反之,如果存在套利機會,投資者則可以買兩種產品種價格便宜者,賣出價格較高者,從而獲得無風險收益,當然這種套利機會只會在極短的時間里存在。這一證券組合的主要功能是給出了買權的定價方法。與期貨不同的是,期貨的套頭交易一旦建立就不用改變,而期權的套頭交易則需不斷調整,直至期權到期。二叉樹思想編輯1:Black-Scholes方程模型優缺點:優點:對歐式期權,有精確的定價公式;缺點:對美式期權,無精確的定價公式,不可能求出解的表達式,而且數學推導和求解過程在金融界較難接受和掌握。2:思想:假定到期且只有兩種可能,而且漲跌幅均為10%的假設都很粗略。修改為:在T分為狠多小的時間間隔Δt,而在每一個Δt,股票價格變化由S到Su或Sd。如果價格上揚概率為p,那麼下跌的概率為1-p。3:u,p,d的確定:由Black-Scholes方程告訴我們:可以假定市場為風險中性。即股票預期收益率μ等於無風險利率r,故有:SerΔt=pSu+(1−p)Sd(23)即:e^{r\Deltat}=pu+(1-p)d=E(S)(24)又因股票價格變化符合布朗運動,從而δSN(rSΔt,σS√Δt)(25)=>D(S)=σ2S2δt;利用D(S)=E(S2)−(E(S))2E(S2)=p(Su)2+(1−p)(Sd)2=>σ2S2Δt=p(Su)2+(1−p)(Sd)2−[pSu+(1−p)Sd]2=>σ2Δt=p(u)2+(1−p)(d)2−[pu+(1−p)d]2(26)又因為股價的上揚和下跌應滿足:ud=1(27)由(24),(26),(27)可解得:其中:a=erδt。4:結論:在相等的充分小的Δt時段內,無論開始時股票價格如何。由(28)~(31)所確定的u,d和p都是常數。(即只與Δt,σ,r有關,而與S無關)。
5. 什麼叫歐式期權定價,什麼叫美式期權定價,什麼叫二叉樹期權估值,這三者的聯系與區別是什麼
期權定價模型(OPM)----由布萊克與斯科爾斯在20世紀70年代提出。該模型認為,只有股價的當前值與未來的預測有關;變數過去的歷史與演變方式與未來的預測不相關 。模型表明,期權價格的決定非常復雜,合約期限、股票現價、無風險資產的利率水平以及交割價格等都會影響期權價格。
中文名
期權定價模型
簡稱
OPM
創始人
布萊克與舒爾斯
創立時間
20世紀70年代
6. 二叉樹期權定價模型的介紹
Black-Scholes期權定價模型雖然有許多優點, 但是它的推導過程難以為人們所接受。在1979年, 羅斯等人使用一種比較淺顯的方法設計出一種期權的定價模型, 稱為二項式模型(Binomial Model)或二叉樹法(Binomial tree)。 二項期權定價模型由考克斯(J.C.Cox)、羅斯(S.A.Ross)、魯賓斯坦(M.Rubinstein)和夏普(Sharpe)等人提出的一種期權定價模型,主要用於計算美式期權的價值。其優點在於比較直觀簡單,不需要太多數學知識就可以加以應用。
7. 如何應用二叉樹模型對無收益資產進行期權定價
Black-Scholes期權定價模型雖然有許多優點, 但是它的推導過程難以為人們所接受。在1979年, 羅斯等內人使用一種比較淺顯容的方法設計出一種期權的定價模型, 稱為二項式模型(Binomial Model)或二叉樹法(Binomial tree)。 二項期權定價模型由考克斯(J.C.Cox)、羅斯(S.A.Ross)、魯賓斯坦(M.Rubinstein)和夏普(Sharpe)等人提出的一種期權定價模型,主要用於計算美式期權的價值。其優點在於比較直觀簡單,不需要太多數學知識就可以加以應用。
8. 二叉樹模型計算期權價格
期權股是真的,期權顧名思義就是一種未來的一種權利。
有一些公司激勵經理人或經營者並不是直接給錢,而是提供一種權利,就是在未來一段時間可以以某個固定價格購買一定數量的公司股票。經理人在規定年限內的任何時間,按事先規定的價格買進企業股票,並在他們認為合適的價位上拋出。
這種方式激勵經理人是很有效的,也是一個比較長期的激勵措施。如果經理人想要獲得更高的收益,就需要將公司經營的出彩,這樣公司的股價才會增值,對於公司來說,將經理人的獎勵和公司的發展綁到一起是合理的。
但是世上並沒有完美的事情,期權股激勵也有弊端。經理人為了加快獲利,可能會更趨向於短時間將公司做大,股票不斷增值,這樣就可能導致一些比較激進的策略的實施。而且經理人一旦大筆持股就會有經營權和所有權的分置的問題出現。
期權股可信度首先看該公司的行業,在行業所處的低位,長期的經營狀況,有無違法行為,高管的學歷專業結構,年齡結構。其次看公司配置期權股的目的。有的是為了保持公司員工的長期穩定,激勵員工。有的是在公司股票跌到低於公司價值,鼓勵員工購買。
這類股票的可靠性行和公司的內在價值有根本性的關系。有兩個公司的員工都長期投資各自就職公司的股票,數年後,一個兩年四倍的收益,一個虧損九成,這就是公司的區別。這就是騰訊和樂視網的區別。有的公司剛估計員工持股,自己卻在二級市場大幅減持。所以公司的本質決定期權股的風險。
敢問問主是否是經理人,公司是採取期權股的方式給您利潤,還是說有一些人想向你出售這種期權股?如果是第二種情況,一定要謹慎處理,不要讓自己的財產受到損失。萬一你接受了流動性不好的期權股,將來賣的時候賣不出去,就不好了。希望能幫助到你。
9. 美式期權二叉樹模型計算 用MATLAB
公式書上有 自己看看吧