期貨多因子
㈠ 喬治·索羅斯寫過一本叫《量化投資》的書嗎
一下內容純手打
證券分析方法主要分三種:
一是基本面分析,代表作《證券分析》《價值投資》,代表任務「巴菲特」;
二是技術面分析,代表做《趨勢技術分析》《道瓊斯理論》等,注重短期投資,索羅斯屬於短期投機類型,但是沒有任何資料顯示他的投資流派屬於純粹的技術面分析,可能的情況是上述兩種都有。今年的而貝爾經濟學得主法瑪提出的」有效市場假說「某一種程度上,否定了技術面分析。
三是量化分析,美國近幾十年興起的一種方法,典型的代表人物是西蒙斯。
中國國內的量化投資的研究還比較少,量化投資的基金以及機構也不夠普遍,切主要集中於香港地區。原因之一是,國內金融金融市場沒有完全開放,金融產品匱乏。美國市場的金融產品多達幾萬種,而國內只有兩百多種。
關於量化投資的書,國內國外都有很多,主要集中與國外,國內學者大多是對國外技術的學習。當然,如果你是初學者,建議你還是從國內的相關書籍開始學起。
如果有一本書,叫《量化投資》,我敢保證你看了一定學不到什麼東西,丁鵬的《量化投資》就是這樣,只是對現在主要方法以及模型的簡單介紹。用於同行業交流也許會有些價值。書籍內容從:量化選股、量化擇時、到套利什麼什麼的,基本上都是簡單的介紹,可以當作課外讀物,了解一下什麼叫量化投資。如果你真的想學到什麼東西,直接網路文庫:量化選股、多因子選股等詞,你會看到無數國內證券機構對市場的量化研究。而且資料詳細。可是,你學不到最根本的原理。
原因如下:
進行量化分析,必須至少具備兩種能力:
一、扎實且足夠的數學、統計學基礎,用於理論上的金融建模;
二、能夠使用相關計量軟體進行數據分析或者模型求解等。
這兩個要求一般人很難到達,所以證券從業的教材認為難度大是量化投資的一個很大局限性。
如果樓主對量化投資有興趣,我可以推薦一些教材給你:
如果僅僅是想了解一下: 丁鵬《量化投資》,書很貴,個人認為沒什麼實用價值。可以有個簡單的系統的認識;
如果是想學習並且能在實際中運用,建議如下:
數學方面:
《微積分》 到高級《高級微積分》
《線性代數》《非線性代數》
《概率論與數理統計》《概率、隨機變數、隨機過程》
《離散數學》《運籌學》《統計學》
金融理論上
《計量經濟學基礎》《計量經濟分析》
《數量金融學》《金融時間序列分析》
。。。。還有很多很多
以及其他金融知識基礎
建模方面
這類的書,我看的不多哦,你自己網路一下,或者找個圖書館看看
計算機軟體
C 和 C++ 至少學一個,SQL 建議學一點
建模軟體主要有:MATHEMATICA MATLAB SAS SAC R Eviews GAMS 等等等等,終於哪些海外基金用的是哪一種,或者是不是自己做的專用軟體,我就不知道了。
不過,上述的軟體,肯定是可以滿足個人的研究需求的。這個,你選幾種學一學還是可以的。
一個人,想要精通上述全部,應該是很難的,所以,註定了,量化分析的方法,單個的普通人很難完成。
量化投資起源與上世紀美國政府大幅度削減了對物理航天業經費自持,導致很多搞火箭的科學家、數學家下崗。於是他們流入金融行業(收入高),利用自己對數學、計算機的優勢,使用原先用於火箭的建模預測證券市場,發現有著顯著成效。當然,這些模型的前提是,現代金融理論的奠基,以及數量金融的發展。
因此,我個人對量化投資的理解是:金融界的火箭科學家,傳統的分析方法,只用看某一或某幾個指標,根據歷史經驗或者主觀的客觀的XXOO判斷證券的未來走勢,但是量化分析,首先建立合理的數學模型,然後藉助計算機運用某些XX的演算法,分析求解,難度相對於傳統的方法難很多。
如果你想比較淺顯的掌握,用於投資決策的參考
那量化分析,也沒有想想中的那麼高深,它本質上是一種金融的建模,本質上,常用的方法還是統計專業的那幾個 ,什麼 回歸分析,線性規劃 ,相關性,時間序列等等等。。。我看了丁鵬的書,大致上認為他是用了這些方法。所以你只用把應用數學學好就好了。
還有一些像遺傳演算法、神經網路這些他的書裡面也提到了,屬於現代演算法,這些方法比較小,難度大,但是我猜只有學術界會用這些方法,因為現代演算法在實際運用中還不夠成熟,預測經常不準確。
表述有些亂,不過大致也只能寫成這樣了。
最後:和量化分析相關的專業主要有三個:
金融專業:金融工程;
數學專業:統計、應用數學;
計算機專業
這些專業的就業方向是可以面向量化分析的
㈡ python培訓需要多久
人工智慧市場的火熱導致python開發工程師崗位薪資水漲船高,且在各行各業的大中小型企業中都很搶手,就業方向非常廣。既可進軍當前正流行的人工智慧行業,也可研究大數據做數據分析人才。那python培訓需要學多久?今天我們一起來探討一下這個問題。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。
第二個階段也是為期一個月,主要學習python全棧開發基礎,通過本模塊的學習,學生不僅能夠掌握js在網路前端中的使用,還能夠把js作為一門通用語言來運用,為學生將來從事全棧工作打下堅實的基礎。
第三個階段是全棧開發項目實戰,整個階段需要1.5個月的時間學習,是整個培訓時間佔比比較長的一個階段,時間更長、案例更多、
實用性更強,在這個階段主要是做項目,學案例,學完這個階段,學員就可勝任python全棧開發工程師的職位。
第四個階段的學習是網路爬蟲,學習三周,主要是掌握數據的爬取,學完這個階段可選擇的職位有網路爬蟲工程師或者是數據採集工程師,第五階段的學習是數據分析+人工智慧,主要是掌握機器學習演算法的匹配方法,深入理解演算法原理與實現步驟,學習三周,這個階段結束學員可選擇的崗位就更多了,數據分析師、演算法工程師、人工智慧工程師等都可以直接勝任。
最後一周的學習時間是就業指導,主要是清晰了解職業發展規劃,明確自身定位,找到適合自身發展的工作,同時提高自己的面試能力,獲得更好的工作機會。
python培訓5個月,只要你好好學習,找到一份滿意的工作不是難題,優就業的python全棧+人工智慧課程,以企業需求為導向,引入企業較熱門技術,項目實戰模擬實際企業開發流程,讓你更加了解真實的企業項目開發,避免你在學習的路上多走彎路
㈢ 量華網上的量化交易有哪些主要的策略模型
國內的量化策略可以簡單分為三個類型,Alpha策略,CTA策略以及高頻交易策略。其中主要的是Alpha策略和CTA策略。
㈣ 量化交易領域有哪些經典策略
量化交易種比較受寬客們所熟知的量化經典策略有:
集合競價選股(股票)
多因子選股(股票)
網格交易(期貨)
指數增強(股票)
跨品種套利(期貨)
跨期套利(期貨)
日內回轉交易(股票)
做市商交易(期貨)
海龜交易法(期貨)
行業輪動(股票)
機器學習(股票)
以上這些經典的量化交易策略源碼都可以到掘金量化交易平台查閱。
㈤ 致遠期貨:多因子模型和統計套利模型有什麼本質區別
2009年以來來,一股「量化基金」源的熱潮悄然掀起,中海基金、長盛基金、光大保德和富國基金先後推出了自己的量化產品,而富國正在推出的富國300增強基金還屬於第一隻增強型的指數基金,就是因為量化概念的引入。關於量化基金,國際資本市場,尤其是美國市場已經有了長足的發展並形成了相當的規模,量化基金通過數理統計分析,選擇那些未來回報可能會超越基準的證券進行投資,以期獲取超越指數基金的收益。區別於普通基金,量化基金主要採用量化投資策略來進行投資組合管理,總的來說,量化基金採用的策略包括:量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易、資產配置等。
㈥ 匯添富成長多因子量化策略在哪個銀行買
1、匯添富成長多因子量化策略在江蘇銀行,恆豐銀行,蘇州銀行,工商銀行等銀行代銷。基金為股票型基金,其預期風險和預期收益高於貨幣市場基金、債券型基金、混合型基金,屬於證券投資基金中較高預期風險、較高預期收益的基金產品。
2、基金的投資范圍為具有良好流動性的金融工具,包括國內依法發行上市的股票(包含中小板、創業板及其他經中國證監會核准上市的股票)、債券、貨幣市場工具、權證、資產支持證券、股指期貨以及法律法規或中國證監會允許基金投資的其他金融工具(但須符合中國證監會相關規定)。 如法律法規或監管機構以後允許基金投資其他品種,基金管理人在履行適當程序後,可以將其納入投資范圍。
㈦ 3分鍾了解深度學習跟量化交易是什麼關系
機器學習怎樣應用於量化交易(一)
曾有朋友問過,國內現在量化領域機器學習應用的少,是否因為效果不如簡單的策略。其實,把機器學習應用在量化交易上始終面臨著兩難,卻並不是無解的兩難。很多時候並不是機器學習不work,而是真正懂如何用正確科學的統計思維使用Machine Learning的人才太少。機器學習涉及到特徵選擇、特徵工程、模型選擇、數據預處理、結果的驗證和分析等一整套建模流程,廣義角度來說就不單單是模型選擇的問題。所以,如果認為「用支持向量機成功預測股票漲跌」 這樣的研究,就是把機器學習應用於量化交易,這種狹義的認識無疑是買櫝還珠,對機器學習領域散落遍地的珍珠視而不見。如果把機器學習的崛起放在歷史進程中考量,無非就是趨勢的延續:現在,可通過系統的數據分析證實過去模糊不定的經驗,機器學習演算法將未曾被察覺的規律得以浮現紙面。在我看來,未來的發展概有兩個方向:1.針對量化交易的統計學習演算法被提出,使其適合於雜訊大,分布不穩定的金融數據分析;2.對於機器學習的熱情回歸理性,從工具為導向回歸到問題為導向。針對如何以問題為導向,在機器學習演算法中挑選合適的工具,分享一些思路。1.多因子模型的因子權重計算當我們在構建多因子模型且已經選定了一系列因子之後,要如何根據不同的市場情況調整各個因子的權重呢?在以往的研究中發現,與其它演算法相比較,隨機森林演算法對於存在非線性、噪音和自變數共線性的訓練集的分析結果更出色。所以,目前在多因子模型的權重上,採用當期收益率對上期因子進行隨機森林回歸分析,以確定下一期多因子模型的因子權重。2.缺失值處理處理缺失值在金融的量化分析中是個無可避免的問題。選取合理的缺失值處理方法,依賴於數據本身的特點、數據缺失的情況、其對應的經濟學意義,以及我們需要使用數據進行何種計算。在嘗試構建多因子模型時,我們選擇了兩種缺失值替換方法:(1)採用期望最大化演算法 來用同一變數的已知數據對缺失值進行極大似然估計。(2)把模型中包含的所有因子作為特徵變數,並賦予其相同的權重,再採用機器學習中的K-近鄰演算法來尋找最相似的標的,保證缺失值替換後,不會強化一部分因子的影響力。其實在量化領域,機器學習解決著線性模型天生的缺陷或弊端,所以還是有著很深的介入的。除去凸優化、降維(提取市場特徵)等領域的應用,目前「非動態性」和「非線性」是兩個重要的弊端。金融關系之間並非靜態,很多時候也不是線性的。統計學習的優勢此時就會體現出來,它們能夠迅速地適應市場,或者用一種更「准確的」方式來描述市場。在國內,機器學習在量化內應用跟領域有很大的關系,跟頻率也有很大的關系。比如,CTA的運用可能就要多於股票,它處理數據的維度要遠小於股票,獲取市場的長度和動態又強於股票。股票市場的momentum要弱於期貨市場的momentum,它的趨勢與股票相比更明顯和低雜訊。這些特徵對於機器學習發揮作用都更加有利。很可能國內一些交易執行演算法的設計上就借鑒了機器學習。我們可以通過學習訂單薄特徵,對下一期盤口變化做一些概率上的預測,經過一定樣本的訓練之後,可以顯著地提升演算法表現。而我仍謹慎看好深度學習等機器學習方法的原因在於,在認識市場上,現行的大部分方法與這些方法並不在一個維度上,這個優勢讓它們與其他方法相比,捕捉到更多的收益。也就是說,一個新的認識市場的角度才能帶來alpha。
㈧ 量化投資策略的趨勢判斷型量化投資策略
量化選股就是利用數量化的方法選擇股票組合,期望該股票組合能夠獲得超越基準收益率的投資行為。量化選股策略總的來說可以分為兩類:第一類是基本面選股,第二類是市場行為選股。
基本面選股介紹了多因子模型、風格輪動模型和行業輪動模型。市場行為選股介紹了資金流模型、動量反轉模型、一致預期模型、趨勢追蹤模型和籌碼選股模型。 與股指期貨套利類似,商品期貨同樣存在套利策略,在買入或賣出某種期貨合約的同時,賣出或買入相關的另一種合約,並在某個時間同時將兩種合約平倉。在交易形式上它與套期保值有些相似,但套期保值是在現貨市場買入(或賣出)實貨、同時在期貨市場上賣出(或買入)期貨合約;而套利卻只在期貨市場上買賣合約,並不涉及現貨交易。
商品期貨套利主要有期現套利、跨期套利、跨市場套利和跨品種套利4種 有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利的,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。
統計套利的主要思路是先找出相關性最好的若干對投資品種(股票或者期貨等),再找出每一對投資品種的長期均衡關系(協整關系),當某一對品種的價差(協整方程的殘差)偏離到一定程度時開始建倉——買進被相對低估的品種、賣空被相對高估的品種,等到價差回歸均衡時獲利了結即可。
統計套利的主要內容包括股票配對交易、股指對沖、融券對沖和外匯對沖交易。 期權(Option)又稱選擇權,是在期貨的基礎上產生的一種衍生性金融工具。從其本質上講,期權實質上是在金融領域將權利和義務分開進行定價,使得權利的受讓人在規定時間內對於是否進行交易行使其權利,而義務方必須履行。在期權的交易時,購買期權的一方稱為買方,而出售期權的一方則稱為賣方;買方即權利的受讓人,而賣方則是必須履行買方行使權利的義務人。
期權的優點在於收益無限的同時風險損失有限,因此在很多時候,利用期權來取代期貨進行做空、套利交易,會比單純利用期貨套利具有更小的風險和更高的收益率。