當前位置:首頁 » 期權期貨 » 歐式看跌期權定價

歐式看跌期權定價

發布時間: 2021-03-30 21:17:05

『壹』 【求解】歐式看漲期權價格 計算題

對於第一問,用抄股票和無風險襲貸款來復制。借入B元的無風險利率的貸款,然後購買N單位的股票,使得一年後該組合的價值和期權的價值相等。於是得到方程組:
N*Sup - B*(1+r ) = 5 ; N*Sdown - B*(1+r )= 0。其中Sup、Sdown為上升下降後的股票價格,r為無風險利率8%.於是可以解出N和B,然後N*S - B就是現在期權的價格,S為股票現價。這是根據一價定律,用一個資產組合來完全復制期權的未來現金流,那麼現在該組合的價格就是期權的價格。
對於第二問,思路完全一樣。只是看跌的時候,股票上漲了期權不行權,到期價值為0;股票下跌了期權行權,到期價值為5。也就是把上邊的兩個方程右邊的數交換一下。

希望對你有所幫助。

『貳』 寫出歐式看漲期權和看跌期權平價公式並給出證明

C+Ke^(-rT)=P+S0

平價公式是根據無套利原則推導出來的。

構造兩個投資組合。
1、看漲期權C,行權價K,距離到專期時間T。現金賬戶Ke^(-rT),利率r,期權到期時恰好變成K。
2、看跌期權P,行權價K,距離到期時間T。標的物股票,現價S0。

看到期時這兩個投資組合的情況。
1、股價St大於K:投資組合1,行使看漲期權C,花掉現金賬戶K,買入標的物股票,股價為St。投資組合2,放棄行使看跌期權,屬持有股票,股價為St。
2、股價St小於K:投資組合1,放棄行使看漲期權,持有現金K。投資組合2,行使看跌期權,賣出標的物股票,得到現金K
3、股價等於K:兩個期權都不行權,投資組合1現金K,投資組合2股票價格等於K。

從上面的討論我們可以看到,無論股價如何變化,到期時兩個投資組合的價值一定相等,所以他們的現值也一定相等。根據無套利原則,兩個價值相等的投資組合價格一定相等。所以我們可以得到C+Ke^(-rT)=P+S0。

『叄』 為什麼剩餘期限長的歐式看跌期權的價格可能低於剩餘期限短的歐式看跌期權

這種情況一般出現在深度實值的歐式看跌期權上。正常期權期限越長,時間價值越大,標的證券價格向有利方向變動可能性越大,其他條件相同時價格越貴,但深度實值的看跌期權因為標的證券價格已經非常低,甚至接近零了,期限再長標的價也不可能小於零,反而標的價上漲可能性很大,所以這種情況下期限長反而是壞事,體現在期權價格就是期限長的深實看跌期權市場價格低於同等期限短的。

『肆』 計算看跌期權當前價值

題目要求看跌期權的價格,由於沒有直接求看跌期權價值的模型(我的cpa書上沒有),所以要先求看漲期權的價值,而對於歐式期權,假定看漲期權和看跌期權有相同的執行價格和到期日,則下述等式成立,
看漲期權價格+執行價格的現值=股票的價格+看跌期權價格
那麼:看跌期權價格=看漲期權價格+執行價格的現值-股票的價格
接下來就求看漲期權的價格,我不知道你用的是什麼書,書上是什麼方法,那我就分別用復制原理和風險中性原理來解一下。
先看復制原理,復制原理就是要創建一個買入股票,同時借入貸款的投資組合,使得組合的投資損益等於期權的損益,這樣創建該組合的成本就是期權的價格了。所以就有下面兩個等式:
股票上行時 期權的價值(上行)=買入股票的數量×上行的股價-借款×(1+利率)
股票下行時 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
上面兩式相減,就可以求出買入股票的數量了,代入數字來看一下
期權的價值(上行)=108-99=9
期權的價值(下行)=0 (股價低於執行價格,不會執行該期權,所以價值為0)
買入股票的數量=(9-0)/(108-90)=0.5
把0.5再代入 期權的價值(下行)=買入股票的數量×下行的股價-借款×(1+利率)
可以算出借款=0.5×90/1.05=42.86
這樣期權的價值=投資組合的成本=買入股票支出-借款=0.5*100-42.86=7.14
再來看下風險中性原理
期望的報酬率=上行概率×上行的百分比+下行概率×下行的百分比
5%=p×(108-100)/100+(1-p)*(90-100)/100
得出上行概率P=83.33% 下行概率1-p=16.67%
這樣六個月後的期權價值=上行概率×期權上行價值+下行概率×期權下行價值
其中期權的上下行價值前面已經算過了,直接代入數字,得出六個月後期權價值=7.7997
注意這是六個月後的價值,所以還要對他折現7.7997/1.05=7.14
再來看二叉樹模型,這個方法個人不太推薦一開始用,不利於理解,等把原理弄清了再用比較好, 我就直接代入數字吧。
期權的價值=(1+5%-0.9)/(1.08-0.9)*[(109-100)/1.05]+(1.08-1.05)/(1.08-0.9)*(0/1.05)=7.14
可以看到這三個方法結果都一樣,都是7.14。
最後再用我一開始提到的公式來算一下期權的看跌價值
看跌價值=7.14+99/1.05-100=1.43
我是這幾天剛看的cpa財管期權這一章,現學現賣下吧,也不知道對不對,希望你幫我對下答案,當然你有什麼問題可以發消息來問我,盡量回答吧。
關於「問題補充」的回答:
1、答案和我的結果值一致的,書上p=-0.5*100+51.43=0.43 按公式算應該是1.43,而不是0.43,可能是你手誤或書印錯了。
2、書上用的應該是復制原理,只不過我是站在看漲期權的角度去求,而書上直接從看跌期權的角度去求解,原理是一樣的。我來說明一下:
前面說過復制原理要創建一個投資組合,看漲時這個組合是買入股票,借入資金,看跌時正好相反,賣空股票,借出資金。
把看漲時的公式改一下,改成,
股票上行時 期權的價值(上行)=-賣空股票的數量×上行的股價+借出資金×(1+利率)
股票下行時 期權的價值(下行)=-賣空股票的數量×下行的股價+借出資金×(1+利率)
這時,期權的價值(上行)=0(股價高於執行價格,看跌的人不會行權,所以價值為0)
期權的價值(下行)=108-99=9
你書上x就是賣空股票的數量,y就是借出的資金,代入數字
0=-x108+1.05y
9=-x90+1.05y
你說書上x90+y1.05=15,應該是9而不是15,不然算不出x=-0.5 y=51.43,你可以代入驗算一下。
所以,期權的價值=投資組合的成本=借出的資金-賣空股票的金額=51.43-0.5*100=1.43
書上的做法,比我先求看漲期權價值,再求看跌要直接,學習了。

『伍』 標的資產的市場價格上漲則歐式看跌期權的價格如何變化

C,D 解析:標的資產價格上漲,看跌期權價格下跌;而到期期限的增加對歐式期權和美式期權的影響是不一樣的。

『陸』 求如何證明 歐式看漲期權與看跌期權價格的平價關系

假設兩個投資組合
A: 一個看漲期權和一個無風險債券,看漲期權的行權價=X,無專風險債券的到屬期總收益=X
B: 一個看跌期權和一股標的股票,看跌期權的行權價格=X,股票價格為S

投資組合A的價格為:看漲期權價格(C)+無風險債券價格(PV(X))。PV(X)為債券現值。
投資組合B的價格為:看跌期權價格(P)+股票價格S

畫圖或者假設不同的到期情況可以發現,A、B的收益曲線完全相同。根據無套利原理,擁有相同收益曲線的兩個投資組合價格必然相同。所以 C+PV(X)=P+S,變形可得C-P=S-PV(X)

『柒』 美式和歐式看跌期權的價值上下限為什麼不一樣

對於無收益資產的期權而言,同時可以適用於美式 看漲期權,因為在無收益情況下,美式看漲期權提前執行是不可取的,期權執行日也就是到期日,所以BS適用美式看漲期權。對於美式看跌,由於可以提前執行,故不適合。

對於有收益資產的期權而言,只需改變收益 現值(即變為 標的證券減去收益折現),BS也適用於歐式,看跌期權和看漲期權,在標的存在收益時,美式看漲和看跌期權存在執行的可能性,因此BS不適用。

(7)歐式看跌期權定價擴展閱讀:

注意事項:

1、買入看跌期權是同買入看漲期權正好相反的操作。看跌期權是出售的權力。當購買看跌期權時,期待股票行情是熊市看跌。

2、在美國每份期權合約都是100股。因此,如果期權價格為$1,一份期權合約的價格為$100。

3、對於標准普爾(S&P)期貨期權,每份合約都可以執行為一份期貨合約。如果期權價格為$1,當期貨合約執行時,將為之支付$250。

4、如果想要買入看跌期權,對行情的展望是旅市看跌的,期望標的資產的價格會下跌。

參考資料來源:網路-看跌期權

參考資料來源:網路-歐式期權

參考資料來源:網路-美式期權

參考資料來源:網路-價值區間

『捌』 歐式期權定價原理

歐式期權金融資產的合理價格為其期望價值
選擇權到期時的合理價值是其每一個可能的價值乘以該價值發生機率之後的加總
根據買權的定義,買進選擇權到期時的期望價值為:
E〔Ct〕=E〔max(St-K,0)〕 (B-1)
其中 :
E〔CT〕是買進選擇權到期時的期望價值
ST 是標的資產在選擇權到期時的之價格
K 是選擇權的履約價格

選擇權到期時有兩種狀況:
Ct={St-K,如果St>K ;0,如果St≤K}
如果以 P 來界定機率則(B-1)式可表示為
E〔Ct〕=P×(E〔St/St>K〕-K)+(1-P)×0=P×(E〔St/St>K〕-K) (B-2)
其中:
P 是 ST > K 的機率
E〔ST/ST>K〕 是在ST > K 的條件下,ST的期望值
(B-2)即為買進選擇權到期時的期望價值
若欲求取該契約最初的合理價格,則需將(B-2)折成現值

C=P×e-rt×(E〔St/St>K〕-K) (B-3)
其中:
C 是選擇權最初的合理價格
r 是連續復利的無風險利率
t 是選擇權的契約(權利)時間

此時選擇權訂價被簡化成的兩個簡單問題:
(a) 決定 P 選擇權到期時(ST > K)的機率
(b) 決定 E〔ST/ST > K〕 選擇權到期時還有內含價值時,標的資產的期望值

『玖』 如何證明歐式看漲期權與看跌期權價格的平價關系

假設兩個投資組合
A: 一個看漲期權和一個無風險債券,看漲期權的行權價=X,無風險債券的到期總收益=X
B: 一個看跌期權和一股標的股票,看跌期權的行權價格=X,股票價格為S

投資組合A的價格為:看漲期權價格(C)+無風險債券價格(PV(X))。PV(X)為債券現值。
投資組合B的價格為:看跌期權價格(P)+股票價格S

畫圖或者假設不同的到期情況可以發現,A、B的收益曲線完全相同。根據無套利原理,擁有相同收益曲線的兩個投資組合價格必然相同。所以 C+PV(X)=P+S,變形可得C-P=S-PV(X)

『拾』 計算看跌期權的價值

1、3個月無風險收益率r=10%x3/12=2.5%;

2、該股票年波動率30%即0.3,3個月後股價變動上行乘數

u=e^[0.3x(3/12)^0.5]=e^(0.3x0.25^0.5)=e^(0.3x0.5)=1.1618,表示3個月後股價可能上升0.1618;

3、股價變動下行乘數d=1/u=1/1.1618=0.8607,表示3個月後股價可能下降0.1393;

4、上行股價Su=股票現價Sx上行乘數u=50x1.1618=58.09;

5、下行股價Sd=股票現價Sx下行乘數d=50x0.8607=43.035;

6、股價上行時期權到期日價值Cu=0;

7、股價下行時期權到期日價值Cd=執行價格-下行股價=50-43.035=6.965;

8、套期保值比率H=(Cd-Cu)/(Su-Sd)=(6.965-0)/(58.09-43.035)=0.4626;

9、期權價值C=(HSu-Cu)/(1+r)-HS=(0.4626x58.09-0)/(1+2.5%)-0.4626x50=3.09。

(10)歐式看跌期權定價擴展閱讀:

期權價值影響因素

1、標的資產市場價格

在其他條件一定的情形下,看漲期權的價值隨著標的資產市場價格的上升而上升;看跌期權的價值隨著標的資產市場價格的上升而下降。

2、執行價格

在其他條件一定的情形下,看漲期權的執行價格越高,期權的價值越小;看跌期權的執行價格越高,期權的價值越大。

3、到期期限

對於美式期權而言,無論是看跌期權還是看漲期權,在其他條件一定的情形下,到期時間越長,期權的到期日價值就越高。

熱點內容
鳳凰傳媒港股 發布:2021-03-31 20:26:44 瀏覽:3
美國原油出口帶來了什麼 發布:2021-03-31 20:26:44 瀏覽:740
k線重合指標 發布:2021-03-31 20:26:26 瀏覽:359
金融財經網站排名 發布:2021-03-31 20:25:22 瀏覽:766
金融視頻網站 發布:2021-03-31 20:25:20 瀏覽:108
公司是否質押 發布:2021-03-31 20:24:28 瀏覽:643
私募眾籌騙 發布:2021-03-31 20:24:21 瀏覽:852
股份構成是什麼意思 發布:2021-03-31 20:24:21 瀏覽:989
2015年a股市值排名 發布:2021-03-31 20:23:56 瀏覽:263
融資名單查詢 發布:2021-03-31 20:22:52 瀏覽:688