聚类指数Cg
㈠ 聚类算法学习的经典书籍有哪些
推荐一些算法书籍,最后面有下载链接,如果想要其它书籍也可以点击那个链接通过自动回复获得
《程序员的数学》
书中讲 解了二进制计数法、逻辑、余数、排列组合、递归、指数爆炸、不可解问题等许多与编程密切相关的数学方法,分析了哥尼斯堡七桥问题、少年高斯求和方法、汉诺塔、斐波那契数列等经典问题和算法。引导读者深入理解编程中的数学方法和思路。
本书还对程序员和计算机的分工进行了有益的探讨。读完此书,你会对以程序为媒介的人机合作有更深刻的理解。
算法领域的经典参考书——《算法•第4版》
《算法•第4版》全面介绍了关于算法和数据结构的必备知识,并特别针对排序、搜索、图处理和字符串处理进行了论述。第4 版具体给出了每位程序员应知应会的50 个算法,提供了实际代码,而且这些Java 代码实现采用了模块化的编程风格,读者可以方便地加以改造。本书配套网站提供了本书内容的摘要及更多的代码实现、测试数据、练习、教学课件等资源。
《计算机程序设计艺术》系列
《卷1:基本算法(第3版)》讲解基本算法,其中包含了其他各卷都需用到的基本内容。本卷从基本概念开始,然后讲述信息结构,并辅以大量的习题及答案。
《卷2:半数值算法(第3版)》全面讲解了半数值算法,分“随机数”和“算术”两章。书中总结了主要算法范例及这些算法的基本理论,广泛剖析了计算机程序设计与数值分析间的相互联系。
《卷3:排序与查找(第2版)》扩展了卷1中信息结构的内容,主要讲排序和查找。书中对排序和查找算法进行了详细的介绍并对各种算法的效率做了大量的分析。
《算法的乐趣》
《算法的乐趣》从一系列有趣的生活实例出发,全面介绍了构造算法的基础方法及其广泛应用,生动地展现了算法的趣味性和实用性。全书分为两个部分,第一部分介绍了算法的概念、常用的算法结构以及实现方法,第二部分介绍了算法在各个领域的应用,如物理实验、计算机图形学、数字音频处理等。其中,既有各种大名鼎鼎的算法,如神经网络、遗传算法、离散傅里叶变换算法及各种插值算法,也有不起眼的排序和概率计算算法。讲解浅显易懂而不失深度和严谨,对程序员有很大的启发意义。书中所有的示例都与生活息息相关,淋漓尽致地展现了算法解决问题的本质,让你爱上算法,乐在其中。
《啊哈!算法》
没有枯燥的描述,没有难懂的公式,一切以实际应用为出发点,通过幽默的语言配以可爱的插图来讲解算法。你更像是在阅读一个个轻松的小故事或是在玩一把趣味解谜 游戏,在轻松愉悦中便掌握算法精髓,感受算法之美。
本书中涉及的数据结构有栈、队列、链表、树、并查集、堆和图等;涉及的算法有排序、枚举、 深度和广度优先搜索、图的遍历,当然还有图论中不可以缺少的四种最短路径算法、两种最小生成树算法、 割点与割边算法、二分图的最大匹配算法等。
网页链接
㈡ 用matlab对简单数字图像进行数字聚类处理代码,最好附上...
用matlab对简单数字图像进行数字聚类处理代码,最好附上...
%%%%%%%%%%%%%模糊聚类%%%%%%%%%%%%%%%%%%%%%%%
clear;
load F:\从0开始\数据\data.txt;
INPUTDATA=data;
%--------原始数据标准化-------%
disp('请选择原始数据标准化方式: ');
disp('1-总和标准化|2-标准差标准化|3-极大值标准化|4-极差标准化>');
wayforstand=input('请输入: ');
switch wayforstand
case 1,
DATAFORCLUS=standard_use_sum(INPUTDATA);
case 2,
DATAFORCLUS=standard_use_std(INPUTDATA);
case 3,
DATAFORCLUS=standard_use_max(INPUTDATA);
case 4,
DATAFORCLUS=standard_use_jc(INPUTDATA);
otherwise
error('您的输入不符合要求->执行结束!!!');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%基于模糊等价关系的模糊聚类%%%%%%%%%%%%%%%%%%%%%%
%----------构造相似关系-----------%
numrows=size(DATAFORCLUS,1);
numcols=size(DATAFORCLUS,2);
disp('请选择对象之间相似性统计量的方式: ');
disp('1-相关系数法|2-夹角余弦法|3-指数相似系数法|4-绝对值指数法|5-算术平均最小法|6-最大最小值法|7-绝对值差数法|8-数量积法>');
wayforr_ij=input('请输入: ');
switch wayforr_ij
case 1, %-----------------------------------相关系数法
for i=1:numrows,
for j=1:numrows,
meani=mean(DATAFORCLUS(i,:));meanj=mean(DATAFORCLUS(j,:));
simiR(i,j)=sum((DATAFORCLUS(i,:)-meani).*(DATAFORCLUS(j,:)-meanj))/...
(sqrt(sum((DATAFORCLUS(i,:)-meani).^2))*sqrt(sum((DATAFORCLUS(j,:)-meanj).^2)));
end
end
case 2, %-----------------------------------夹角余弦法
for i=1:numrows,
for j=1:numrows,
simiR(i,j)=sum(DATAFORCLUS(i,:).*DATAFORCLUS(j,:))/...
(sqrt(sum(DATAFORCLUS(i,:).*DATAFORCLUS(i,:......
㈢ R软件中如何进行群落聚类分析
群落按照物来种相似形组成进行自聚类分析,可以用树状图较好的表现物种的组成关系。受到很多植被学家的重视。这里以R软件实现聚类分析为例。 如果按照物种组成的相似性做聚类分析,那么可以用Jaccard指数(经过转换的)。Jaccard指数只考虑物种在两个样方间是否重复出现,盖度在分析的过程中并不起什么作用。但是如果对乔木和灌木进行分析,就可以考虑个体的数量,计算样方物种组成的相似性的时候用Bray-Curtis指数。Jaccard指数和Bray-Curtis指数在众多生态学相关的程序包中都是可以计算的。下面说一下在R软件中,结合vegan程序包,对草本样方的物种组成进行聚类分析。 下面是在R中的具体操作过程:#第一步#是矩阵的整理,建议先整理一下各样地的名录,成如下格式,再用R整理成物种矩阵。
㈣ 聚类分析 马氏距离中S怎么算
在聚类分析抄中,距离并不是固定的,因为欧式距离比较简单,而且能基本体现算法的性能,因此,比较常用。其它的距离也是有用的,可以根据具体的问题采用不同的距离,比如可以采用马氏距离来增加对椭球形状聚类结构的识别能力,马氏距离是欧式距离的推广,它的等距离点组成的是一个超椭球面,而欧式距离显然是一个球面。再举个例子,在距离函数中采用指数形式可以抑制噪声,比如基于高斯核诱导距离函数的聚类算法等等。距离函数本身的研究就是一门很深的学问,希望对你有帮助,全是自己打的,绝无雷同,请给点分。
㈤ 遗传算法改进的模糊C-均值聚类MATLAB源码范例
function [BESTX,BESTY,ALLX,ALLY]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函数实现遗传算法,用于模糊C-均值聚类
%% 输入参数列表
% K 迭代次数
% N 种群规模,要求是偶数
% Pm 变异概率
% LB 决策变量的下界,M×1的向量
% UB 决策变量的上界,M×1的向量
% D 原始样本数据,n×p的矩阵
% c 分类个数
% m 模糊C均值聚类数学模型中的指数
%% 输出参数列表
% BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体
% BESTY K×1矩阵,记录每一代的最优个体的评价函数值
% ALLX K×1细胞结构,每一个元素是M×N矩阵,记录全部个体
% ALLY K×N矩阵,记录全部个体的评价函数值
%% 第一步:
M=length(LB);%决策变量的个数
%种群初始化,每一列是一个样本
farm=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
farm(i,:)=x;
end
%输出变量初始化
ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体
ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值
BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k=1;%迭代计数器初始化
%% 第二步:迭代过程
while k<=K
%% 以下是交叉过程
newfarm=zeros(M,2*N);
Ser=randperm(N);%两两随机配对的配对表
A=farm(:,Ser(1));
B=farm(:,Ser(2));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];%产生子代a
b=[B(1:P0,:);A((P0+1):end,:)];%产生子代b
newfarm(:,2*N-1)=a;%加入子代种群
newfarm(:,2*N)=b;???
for i=1:(N-1)
A=farm(:,Ser(i));
B=farm(:,Ser(i+1));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];
b=[B(1:P0,:);A((P0+1):end,:)];
newfarm(:,2*i-1)=a;
newfarm(:,2*i)=b;
end
FARM=[farm,newfarm];
%% 选择复制
SER=randperm(3*N);
FITNESS=zeros(1,3*N);
fitness=zeros(1,N);
for i=1:(3*N)
Beta=FARM(:,i);
FITNESS(i)=FIT(Beta,D,c,m);
end
for i=1:N
f1=FITNESS(SER(3*i-2));
f2=FITNESS(SER(3*i-1));
f3=FITNESS(SER(3*i));
if f1<=f2&&f1<=f3
farm(:,i)=FARM(:,SER(3*i-2));
fitness(:,i)=FITNESS(:,SER(3*i-2));
elseif f2<=f1&&f2<=f3
farm(:,i)=FARM(:,SER(3*i-1));
fitness(:,i)=FITNESS(:,SER(3*i-1));
else
farm(:,i)=FARM(:,SER(3*i));
fitness(:,i)=FITNESS(:,SER(3*i));
end
end
%% 记录最佳个体和收敛曲线
X=farm;
Y=fitness;
ALLX{k}=X;
ALLY(k,:)=Y;
minY=min(Y);
pos=find(Y==minY);
BESTX{k}=X(:,pos(1));
BESTY(k)=minY;???
%% 变异
for i=1:N
if Pm>rand&&pos(1)~=i
AA=farm(:,i);
BB=GaussMutation(AA,LB,UB);
farm(:,i)=BB;
end
end
disp(k);
k=k+1;
end
%% 绘图
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
ylabel('函数值')
xlabel('迭代次数')
grid on
忘记写了,这个是源代码!谢谢谢谢!
㈥ 如何计算k-means的准确率
如果你说的来是用外部评价源指标来评价K-means聚类的聚类结果的话,可以用Purity指数等。如图,有聚类算法把样本分为3个簇,cluster1,2,3。其中cluster1中x最多,把cluster1看作是x的簇。cluster2中o最多,就看做是o的簇,以此。cluster1中x有5个,cluster2中o有4个,cluster3中◇有3个,总样本数是17个。那么,此次划分Purity指数就是(5+4+3)/17=0.71。
参考链接。
网页链接
㈦ 本人刚学模糊C-均值聚类,请教大虾磅我解释下面的程序,万分感谢!
function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 采用模糊C均值对数据集data聚为_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;
if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!');
end
data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度
% 默认操作参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志
if nargin == 2,
options = default_options;
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option;
if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!');
end
end
%将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志
obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn
U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end
iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];
% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);
% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo ---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo; % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
dist = distfcm(center, data); % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式
% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out ---- 距离
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end
㈧ 怎么利用模糊C均值聚类实现图像分割啊具体代码
%%%%%%%%%%%%%%%模糊聚类%%%%%%%%%%%%%%%%%%%%%%%
clear;
load F:\从0开始\数据\data.txt;
INPUTDATA=data;
%--------原始数据标准化-------%
disp('请选择原始数据标准化方式: ');
disp('<1-总和标准化|2-标准差标准化|3-极大值标准化|4-极差标准化>');
wayforstand=input('请输入: ');
switch wayforstand
case 1,
DATAFORCLUS=standard_use_sum(INPUTDATA);
case 2,
DATAFORCLUS=standard_use_std(INPUTDATA);
case 3,
DATAFORCLUS=standard_use_max(INPUTDATA);
case 4,
DATAFORCLUS=standard_use_jc(INPUTDATA);
otherwise
error('您的输入不符合要求->执行结束!!!');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%基于模糊等价关系的模糊聚类%%%%%%%%%%%%%%%%%%%%%%
%----------构造相似关系-----------%
numrows=size(DATAFORCLUS,1);
numcols=size(DATAFORCLUS,2);
disp('请选择对象之间相似性统计量的方式: ');
disp('<1-相关系数法|2-夹角余弦法|3-指数相似系数法|4-绝对值指数法|5-算术平均最小法|6-最大最小值法|7-绝对值差数法|8-数量积法>');
wayforr_ij=input('请输入: ');
switch wayforr_ij
case 1, %-----------------------------------相关系数法
for i=1:numrows,
for j=1:numrows,
meani=mean(DATAFORCLUS(i,:));meanj=mean(DATAFORCLUS(j,:));
simiR(i,j)=sum((DATAFORCLUS(i,:)-meani).*(DATAFORCLUS(j,:)-meanj))/...
(sqrt(sum((DATAFORCLUS(i,:)-meani).^2))*sqrt(sum((DATAFORCLUS(j,:)-meanj).^2)));
end
end
case 2, %-----------------------------------夹角余弦法
for i=1:numrows,
for j=1:numrows,
simiR(i,j)=sum(DATAFORCLUS(i,:).*DATAFORCLUS(j,:))/...
(sqrt(sum(DATAFORCLUS(i,:).*DATAFORCLUS(i,:)))*sqrt(sum(DATAFORCLUS(j,:).*DATAFORCLUS(j,:))));
end
end
case 3, %-----------------------------------指数相似系数法
case 4, %-----------------------------------绝对值指数法
case 5, %-----------------------------------算术平均最小法
case 6, %-----------------------------------最大最小值法
case 7, %-----------------------------------绝对值差数法
case 8, %-----------------------------------数量积法
otherwise
error('您的输入不符合要求->执行结束!!!');
end
%-------改造成等价关系----------%
sign=0;
numselfmul=1;
simiRk=eye(numrows);
equi_tem=simiR;
while sign==0,
for i=1:numrows,
for j=1:numrows,
for c=1:numrows,
rij_temp(c)=min([equi_tem(i,c) equi_tem(c,j)]);
end
simiRk(i,j)=max(rij_temp);
end
end
%--------------%
if sum(sum(simiRk-equi_tem,1))~=0,
numselfmul=numselfmul+1;
equi_tem=simiRk;
else
sign=1;
break
end
%--------------%
end
if sign==1,
disp('从相似矩阵到等价矩阵改造成功!!!');
else
disp('从相似矩阵到等价矩阵改造失败!!!');
end
equiR=simiRk;
numclass=input('请输入聚类数: ');
%---------在不同的截集水平进行聚类--------------%
clasc=0;
comp_vec(1,1:numrows)=0;
index=0;
clasc=0;
tip=0;
alpha=0;
temnumeachclass=0;
while (tip==0),
%alpha=input('请输入进行分类的截集水平λ: ');
%alpha=0.5; %调试
if (alpha<0 || alpha>1),
error('您输入的截集水平λ不符合分类要求->执行结束!!!');
end
comp_arr=ones(numrows)*alpha;
result_arr=(equiR>=comp_arr); %--------------------result_arr判断矩阵
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%捡菜算法
for i=1:numrows,
if sum(comp_vec(1,:)==result_arr(i,:))<numrows, %-----------说明没有归类
temnumeachclass=0;
%numeachclass(clasc)=index-temnumeachclass;
temsave=result_arr(i,:);
for j=1:numrows,
if sum(result_arr(j,:)==temsave)==numrows,
index=index+1;
class(index)=j;
result_arr(j,:)=0; %--------------------说明已经被归类
temnumeachclass=temnumeachclass+1;
end
end
clasc=clasc+1;
nec(clasc)=temnumeachclass;
else
continue;
end
end
if clasc>=numclass,
tip=1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%当模糊分类的数目小于等于所给出的类数时退出循环体
disp('成功!!!');
else
clear class;
clear numeachclass;
clear nec;
clasc=0;
index=0;
temnumeachclass=0;
alpha=alpha+0.01;
end
end
%----取聚类结果----%
num=0;
n=0;
for i=1:clasc,
for j=1:nec(i),
num=num+1;
n=n+1;
CLUS(n,:)=INPUTDATA(class(num),:);
end
n=n+1;
CLUS(n,:)=inf;
end
%format single(CLUS)
lenexport=size(CLUS,1);
for i=1:lenexport,
RESULT(i,:)=sprintf('%15.2f',CLUS(i,:));
end
RESULT
㈨ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型
-Means聚类算源法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。
随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变
Figure 1
K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。
实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。
技术路线:
sklearn.cluster.Kmeans
数据实例: