当前位置:首页 » 股票行情 » 抛物线yaxk2

抛物线yaxk2

发布时间: 2021-03-26 14:09:58

❶ 抛物线弦长

设A[x1,(x1)^2/6],B[x2,(x2)^2/6]
直线OA斜率:k1=[(x1)^2/6]/x1=x1/6
直线OB斜率k2=x2/6
OA,OB垂直故k1k2=-1=x1x2/36
x1x2=-36
过AB两点直线方程为y=(x1+x2)x/6+6
(过程略)
又P(4,2)在AB上,代入,得到=4(X1+X2)/6+6
即X1+X2=-6及X1X2=-36
X1=-3+3√5
X2=-3-3√5
AB长=√{(X2-X1)^2+{(1/6)[(X2)^2-(X1)^2]^2}}=1080
思路如此,方法应无问题,计算请再自算一遍
,可能会有错误

❷ 数学公式抛物线

A(x1,y1),B(x2,y2),A,B在抛物线y²=2px上,则有:

① 直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;

(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)

② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;

③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);

⑥弦长公式:AB=√(1+k2)*│x1-x2│;

⑦△=b2-4ac;

⑴△=b2-4ac>0有两个实数根;

⑵△=b2-4ac=0有两个一样的实数根;

⑶△=b2-4ac<0没实数根。

⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;

⑨标准形式的抛物线在(x0,y0)点的切线是:yy0=p(x+x0)

(注:圆锥曲线切线方程中x²=x*x0 ,y²=y*y0,x=(x+x0)/2 , y=(y+y0)/2 )

(2)抛物线yaxk2扩展阅读:

(1)知道抛物线过三个点(x1,y1)(x2,y2)(x3,y3)设抛物线方程为y=ax²+bx+c,将各个点的坐标代进去得到一个三元一次方程组,解得a,b,c的值即得解析式。

(2)知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。

(3)知道对称轴x=k,设抛物线方程是y=a(x-k)²+b,再结合其它条件确定a,c的值。

(4)知道二次函数的最值为p,设抛物线方程是y=a(x-k)²+p,a,k要根据其它条件确定。

❸ 抛物线的公式

抛物线公式:
一般式:y=ax2+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(x-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)

❹ 抛物线的弧长怎么算

首先你要懂得求抛物线与直线的交点(有两个,判断取近距离的点),方法,先假经过点(x,y)的直线的斜率为K,求交点,再求交点上的抛物线的斜率K2,tan-1(K)得直线方位角F1,tan-1(K1)得交上上抛物线方位角F2,F1 -F2计算两方位角的夹角,判断此夹角是否为90度(270),不为90度就F1=F1+(F1-F2-90),再tan(F1)得改正后的K值,进行第二次计算,直到两方位角互相垂直(当然要设定精度不然程序会死循环下去),最后求出交点与待求点的距离就是法距离了!(注,抛物线任意点斜率可通过导数公式求得)

❺ 抛物线高中数学问题

解答:
设AB:y=k(x+2)
设A(x1,y1),B(x2,y2),
C(x3,y3),D(x4,y4)
∴ AM的方程是y=[y1/(x1-1)](x-1)
设 k0=y1/(x1-1)
则 AM: y=k0(x-1)
与抛物线方程联立
∴ k0²(x-1)²=4x
∴ k0²-(2k0²+4)x+k0²=0
利用韦达定理
x3*x1=1
∴ x3=1/x1
∴ y3=k0(x3-1)=[y1/(x1-1)]*[1/x1-1]=-y1/x1
即 M(1/x1,-y1/x1)
同理 N(1/x2,-y2/x2)
∴ k(MN)=(-y1/x1+y2/x2)/[1/x1-1/x2]
=[-y1x2+x1y2]/(x2-x1)
=[-k(x1+2)x2+k(x2+2)x1]/(x2-x1)
=k(2x2-2x1)/(x2-x1)
=k*2
∴ K(MN)/k(AB)=2
即 k(MN)/k(AB)=2
∴ k1/k2=2
∴ k1/k2是定值,为2

抱歉,原来的解答最后的几步输入错误,重新改动了。

❻ 抛物线的相关结论

抛物线的相关结论:

当A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:

1、直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)

2、焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;

3、(1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))

4、若OA垂直OB则AB过定点M(2P,0);

5、焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);

6、弦长公式:AB=√(1+k2)*│x1-x2│;

7、△=b2-4ac;△=b2-4ac>0有两个实数根;△=b2-4ac=0有两个一样的实数根;△=b2-4ac<0没实数根;

8、由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;

9、标准形式的抛物线在(x0,y0)点的切线是:yy0=p(x+x0),(注:圆锥曲线切线方程中x²=x*x0 ,y²=y*y0,x=(x+x0)/2 , y=(y+y0)/2 )

抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。

抛物线各类方程式的共同点:

1、原点在抛物线上,离心率e均为1;

2、对称轴为坐标轴;

3、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4

抛物线各类方程式的不同点:

1、对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;

2、开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。

❼ 抛物线所有公式

一般式:y=aX2+bX+c(a、b、c为常数,a≠0)

顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)

交点式(两根式):y=a(x-x1)(x-x2) (a≠0)

其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。

抛物线四种方程的异同

共同点:

①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;

③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。

不同点:

①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;

②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。

切线方程:

抛物线y2=2px上一点(x0,y0)处的切线方程为:

(7)抛物线yaxk2扩展阅读:

A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:

① 直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;

(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)

② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;

③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);

⑥弦长公式:AB=√(1+k2)*│x1-x2│;

⑦△=b2-4ac;

⑴△=b2-4ac>0有两个实数根;

⑵△=b2-4ac=0有两个一样的实数根;

⑶△=b2-4ac<0没实数根。

⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;

⑨标准形式的抛物线在(x0,y0)点的切线是:yy0=p(x+x0)

(注:圆锥曲线切线方程中x²=x*x0 ,y²=y*y0,x=(x+x0)/2 , y=(y+y0)/2 )

❽ 抛物线初中知识点整理

1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

❾ 什么是抛物线

抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法[1]。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。

中文名
抛物线方程
外文名
parabolic equation
应用学科
数学
适用领域范围
数学、物理、建筑学等
解释
指抛物线的轨迹方程
定义
抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线[2] 。
方程
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中P(x0,y0)为抛物线上任一点[3] 。
标准方程
y^2=2px(p>0)
y^2=-2px(p>0)
x^2=2py(p>0)
x^2=-2py(p>0)
图形

范围
x≥0,y R
x≤0,y R
y≥0,x R
y≤0,x R
展开全部
对于抛物线y^2=2px(p≠0)上的点的坐标可设为( ,y0),以简化运算。
抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x1,y1)、B(x2,y2),直线OA与OB的斜率分别为k1,k2,直线l的倾斜角为α,则有y1y2=-p^2,x1x2= ,k1k2=-4,|OA|= ,|OB|= ,|AB|=x1+x2+p。
几何性质
方程的具体表达式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0[4] 。

❿ 抛物线y=(k2-2)x2-4kx+m的对称轴的直线x=2,且它的最低点在直线y=-1/2+2上,

解:来 把x=2带入y=-1/2x+2中,得y=1
∴最低自点(顶点)为(2,1)
根据顶点公式(﹣b/2a,4ac-b2/4a)
得k1=-2 k2=1
∵解析式有最低点
所以k2-2>0
所以k=-2
∴y=2x²+8x+m
把点(2,1)带入得 m=-23
所以 解析式为y=2x²+8x-23

热点内容
凤凰传媒港股 发布:2021-03-31 20:26:44 浏览:3
美国原油出口带来了什么 发布:2021-03-31 20:26:44 浏览:740
k线重合指标 发布:2021-03-31 20:26:26 浏览:359
金融财经网站排名 发布:2021-03-31 20:25:22 浏览:766
金融视频网站 发布:2021-03-31 20:25:20 浏览:108
公司是否质押 发布:2021-03-31 20:24:28 浏览:643
私募众筹骗 发布:2021-03-31 20:24:21 浏览:852
股份构成是什么意思 发布:2021-03-31 20:24:21 浏览:989
2015年a股市值排名 发布:2021-03-31 20:23:56 浏览:263
融资名单查询 发布:2021-03-31 20:22:52 浏览:688