当前位置:首页 » 股票行情 » 若抛物线y3xk

若抛物线y3xk

发布时间: 2021-03-29 09:30:20

❶ 抛物线的问题

抛物线不是只能y=x^2+....,抛物线也有可能是x=y^2+...
只是抛物线是横着的

❷ 物理中抛物线是怎么回事

1.什么是抛物线?
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.
另外,F称为"抛物线的焦点",l称为"抛物线的准线".
定义焦点到抛物线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面
直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程
右开口抛物线:y^2=2px
左开口抛物线:y^2=-2px
上开口抛物线:y=x^2/2p
下开口抛物线:y=-x^2/2p
3.抛物线相关参数(对于向右开口的抛物线)
离心率:e=1
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)
4.它的解析式求法:三点代入法
5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.
抛物线:y
=
ax*
+
bx
+
c
就是y等于ax
的平方加上
bx再加上
c
a
>
0时开口向上
a
<
0时开口向下
c
=
0时抛物线经过原点
b
=
0时抛物线对称轴为y轴
还有顶点式y
=
a(x-h)*
+
k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)
准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px
y^2=-2px
x^2=2py
x^2=-2py

❸ 抛物线是什么标准方程式是各个字母表示什么

抛物线:y
=
ax*
+
bx
+
c
就是y等于ax
的平方加上
bx再加上
c
a
>
0时开口向上
a
<
0时开口向下
c
=
0时抛物线经过原点
b
=
0时抛物线对称轴为y轴
还有顶点式y
=
a(x-h)*
+
k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)
准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px
y^2=-2px
x^2=2py
x^2=-2py

❹ 高二数学抛物线问题

解:
(1)设M(m,0)
因为直线l与抛物线交于两点
所以设直线l:x-m=ky
x-m=ky
{ =>y²-ky-m=0
y²=x
所以m=-y1y2=1
M点坐标为(1,0)
(2)因为y²=x x1x2=y1方y2方=1
所以kOAkOB=y1y2/x1x2=-1
OA垂直OB
(3)已知y1+y2=k y1y2=-1
所以SΔAOB=1/2|OM||y1-y2|=1/2根号下k²+4
k=0时SΔAOB有最小值1

❺ 谁知道抛物线公式的字母要中文的解释哦

y = ax* + bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x-h)* + k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值

呵呵我也上初三~
快中考了~
你也加油哦~

❻ 抛物线的问题

平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程
右开口抛物线:y^2=2px
左开口抛物线:y^2=-2px
上开口抛物线:y=x^2/2p
下开口抛物线:y=-x^2/2p
3.抛物线相关参数(对于向右开口的抛物线)
离心率:e=1
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)
4.它的解析式求法:三点代入法
5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.
抛物线:y
=
ax*
+
bx
+
c
就是y等于ax
的平方加上
bx再加上
c
a
>
0时开口向上
a
<
0时开口向下
c
=
0时抛物线经过原点
b
=
0时抛物线对称轴为y轴
还有顶点式y
=
a(x-h)*
+
k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)
准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px
y^2=-2px
x^2=2py
x^2=-2py

❼ 什么是抛物线

抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法[1]。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。

中文名
抛物线方程
外文名
parabolic equation
应用学科
数学
适用领域范围
数学、物理、建筑学等
解释
指抛物线的轨迹方程
定义
抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线[2] 。
方程
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中P(x0,y0)为抛物线上任一点[3] 。
标准方程
y^2=2px(p>0)
y^2=-2px(p>0)
x^2=2py(p>0)
x^2=-2py(p>0)
图形

范围
x≥0,y R
x≤0,y R
y≥0,x R
y≤0,x R
展开全部
对于抛物线y^2=2px(p≠0)上的点的坐标可设为( ,y0),以简化运算。
抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x1,y1)、B(x2,y2),直线OA与OB的斜率分别为k1,k2,直线l的倾斜角为α,则有y1y2=-p^2,x1x2= ,k1k2=-4,|OA|= ,|OB|= ,|AB|=x1+x2+p。
几何性质
方程的具体表达式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0[4] 。

热点内容
凤凰传媒港股 发布:2021-03-31 20:26:44 浏览:3
美国原油出口带来了什么 发布:2021-03-31 20:26:44 浏览:740
k线重合指标 发布:2021-03-31 20:26:26 浏览:359
金融财经网站排名 发布:2021-03-31 20:25:22 浏览:766
金融视频网站 发布:2021-03-31 20:25:20 浏览:108
公司是否质押 发布:2021-03-31 20:24:28 浏览:643
私募众筹骗 发布:2021-03-31 20:24:21 浏览:852
股份构成是什么意思 发布:2021-03-31 20:24:21 浏览:989
2015年a股市值排名 发布:2021-03-31 20:23:56 浏览:263
融资名单查询 发布:2021-03-31 20:22:52 浏览:688