欧式看跌期权定价
『壹』 【求解】欧式看涨期权价格 计算题
对于第一问,用抄股票和无风险袭贷款来复制。借入B元的无风险利率的贷款,然后购买N单位的股票,使得一年后该组合的价值和期权的价值相等。于是得到方程组:
N*Sup - B*(1+r ) = 5 ; N*Sdown - B*(1+r )= 0。其中Sup、Sdown为上升下降后的股票价格,r为无风险利率8%.于是可以解出N和B,然后N*S - B就是现在期权的价格,S为股票现价。这是根据一价定律,用一个资产组合来完全复制期权的未来现金流,那么现在该组合的价格就是期权的价格。
对于第二问,思路完全一样。只是看跌的时候,股票上涨了期权不行权,到期价值为0;股票下跌了期权行权,到期价值为5。也就是把上边的两个方程右边的数交换一下。
希望对你有所帮助。
『贰』 写出欧式看涨期权和看跌期权平价公式并给出证明
C+Ke^(-rT)=P+S0
平价公式是根据无套利原则推导出来的。
构造两个投资组合。
1、看涨期权C,行权价K,距离到专期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。
2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。
看到期时这两个投资组合的情况。
1、股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。投资组合2,放弃行使看跌期权,属持有股票,股价为St。
2、股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3、股价等于K:两个期权都不行权,投资组合1现金K,投资组合2股票价格等于K。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。根据无套利原则,两个价值相等的投资组合价格一定相等。所以我们可以得到C+Ke^(-rT)=P+S0。
『叁』 为什么剩余期限长的欧式看跌期权的价格可能低于剩余期限短的欧式看跌期权
这种情况一般出现在深度实值的欧式看跌期权上。正常期权期限越长,时间价值越大,标的证券价格向有利方向变动可能性越大,其他条件相同时价格越贵,但深度实值的看跌期权因为标的证券价格已经非常低,甚至接近零了,期限再长标的价也不可能小于零,反而标的价上涨可能性很大,所以这种情况下期限长反而是坏事,体现在期权价格就是期限长的深实看跌期权市场价格低于同等期限短的。
『肆』 计算看跌期权当前价值
题目要求看跌期权的价格,由于没有直接求看跌期权价值的模型(我的cpa书上没有),所以要先求看涨期权的价值,而对于欧式期权,假定看涨期权和看跌期权有相同的执行价格和到期日,则下述等式成立,
看涨期权价格+执行价格的现值=股票的价格+看跌期权价格
那么:看跌期权价格=看涨期权价格+执行价格的现值-股票的价格
接下来就求看涨期权的价格,我不知道你用的是什么书,书上是什么方法,那我就分别用复制原理和风险中性原理来解一下。
先看复制原理,复制原理就是要创建一个买入股票,同时借入贷款的投资组合,使得组合的投资损益等于期权的损益,这样创建该组合的成本就是期权的价格了。所以就有下面两个等式:
股票上行时 期权的价值(上行)=买入股票的数量×上行的股价-借款×(1+利率)
股票下行时 期权的价值(下行)=买入股票的数量×下行的股价-借款×(1+利率)
上面两式相减,就可以求出买入股票的数量了,代入数字来看一下
期权的价值(上行)=108-99=9
期权的价值(下行)=0 (股价低于执行价格,不会执行该期权,所以价值为0)
买入股票的数量=(9-0)/(108-90)=0.5
把0.5再代入 期权的价值(下行)=买入股票的数量×下行的股价-借款×(1+利率)
可以算出借款=0.5×90/1.05=42.86
这样期权的价值=投资组合的成本=买入股票支出-借款=0.5*100-42.86=7.14
再来看下风险中性原理
期望的报酬率=上行概率×上行的百分比+下行概率×下行的百分比
5%=p×(108-100)/100+(1-p)*(90-100)/100
得出上行概率P=83.33% 下行概率1-p=16.67%
这样六个月后的期权价值=上行概率×期权上行价值+下行概率×期权下行价值
其中期权的上下行价值前面已经算过了,直接代入数字,得出六个月后期权价值=7.7997
注意这是六个月后的价值,所以还要对他折现7.7997/1.05=7.14
再来看二叉树模型,这个方法个人不太推荐一开始用,不利于理解,等把原理弄清了再用比较好, 我就直接代入数字吧。
期权的价值=(1+5%-0.9)/(1.08-0.9)*[(109-100)/1.05]+(1.08-1.05)/(1.08-0.9)*(0/1.05)=7.14
可以看到这三个方法结果都一样,都是7.14。
最后再用我一开始提到的公式来算一下期权的看跌价值
看跌价值=7.14+99/1.05-100=1.43
我是这几天刚看的cpa财管期权这一章,现学现卖下吧,也不知道对不对,希望你帮我对下答案,当然你有什么问题可以发消息来问我,尽量回答吧。
关于“问题补充”的回答:
1、答案和我的结果值一致的,书上p=-0.5*100+51.43=0.43 按公式算应该是1.43,而不是0.43,可能是你手误或书印错了。
2、书上用的应该是复制原理,只不过我是站在看涨期权的角度去求,而书上直接从看跌期权的角度去求解,原理是一样的。我来说明一下:
前面说过复制原理要创建一个投资组合,看涨时这个组合是买入股票,借入资金,看跌时正好相反,卖空股票,借出资金。
把看涨时的公式改一下,改成,
股票上行时 期权的价值(上行)=-卖空股票的数量×上行的股价+借出资金×(1+利率)
股票下行时 期权的价值(下行)=-卖空股票的数量×下行的股价+借出资金×(1+利率)
这时,期权的价值(上行)=0(股价高于执行价格,看跌的人不会行权,所以价值为0)
期权的价值(下行)=108-99=9
你书上x就是卖空股票的数量,y就是借出的资金,代入数字
0=-x108+1.05y
9=-x90+1.05y
你说书上x90+y1.05=15,应该是9而不是15,不然算不出x=-0.5 y=51.43,你可以代入验算一下。
所以,期权的价值=投资组合的成本=借出的资金-卖空股票的金额=51.43-0.5*100=1.43
书上的做法,比我先求看涨期权价值,再求看跌要直接,学习了。
『伍』 标的资产的市场价格上涨则欧式看跌期权的价格如何变化
C,D 解析:标的资产价格上涨,看跌期权价格下跌;而到期期限的增加对欧式期权和美式期权的影响是不一样的。
『陆』 求如何证明 欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无专风险债券的到属期总收益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为:看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)
『柒』 美式和欧式看跌期权的价值上下限为什么不一样
对于无收益资产的期权而言,同时可以适用于美式 看涨期权,因为在无收益情况下,美式看涨期权提前执行是不可取的,期权执行日也就是到期日,所以BS适用美式看涨期权。对于美式看跌,由于可以提前执行,故不适合。
对于有收益资产的期权而言,只需改变收益 现值(即变为 标的证券减去收益折现),BS也适用于欧式,看跌期权和看涨期权,在标的存在收益时,美式看涨和看跌期权存在执行的可能性,因此BS不适用。
(7)欧式看跌期权定价扩展阅读:
注意事项:
1、买入看跌期权是同买入看涨期权正好相反的操作。看跌期权是出售的权力。当购买看跌期权时,期待股票行情是熊市看跌。
2、在美国每份期权合约都是100股。因此,如果期权价格为$1,一份期权合约的价格为$100。
3、对于标准普尔(S&P)期货期权,每份合约都可以执行为一份期货合约。如果期权价格为$1,当期货合约执行时,将为之支付$250。
4、如果想要买入看跌期权,对行情的展望是旅市看跌的,期望标的资产的价格会下跌。
参考资料来源:网络-看跌期权
参考资料来源:网络-欧式期权
参考资料来源:网络-美式期权
参考资料来源:网络-价值区间
『捌』 欧式期权定价原理
欧式期权金融资产的合理价格为其期望价值
选择权到期时的合理价值是其每一个可能的价值乘以该价值发生机率之后的加总
根据买权的定义,买进选择权到期时的期望价值为:
E〔Ct〕=E〔max(St-K,0)〕 (B-1)
其中 :
E〔CT〕是买进选择权到期时的期望价值
ST 是标的资产在选择权到期时的之价格
K 是选择权的履约价格
选择权到期时有两种状况:
Ct={St-K,如果St>K ;0,如果St≤K}
如果以 P 来界定机率则(B-1)式可表示为
E〔Ct〕=P×(E〔St/St>K〕-K)+(1-P)×0=P×(E〔St/St>K〕-K) (B-2)
其中:
P 是 ST > K 的机率
E〔ST/ST>K〕 是在ST > K 的条件下,ST的期望值
(B-2)即为买进选择权到期时的期望价值
若欲求取该契约最初的合理价格,则需将(B-2)折成现值
C=P×e-rt×(E〔St/St>K〕-K) (B-3)
其中:
C 是选择权最初的合理价格
r 是连续复利的无风险利率
t 是选择权的契约(权利)时间
此时选择权订价被简化成的两个简单问题:
(a) 决定 P 选择权到期时(ST > K)的机率
(b) 决定 E〔ST/ST > K〕 选择权到期时还有内含价值时,标的资产的期望值
『玖』 如何证明欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为:看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)
『拾』 计算看跌期权的价值
1、3个月无风险收益率r=10%x3/12=2.5%;
2、该股票年波动率30%即0.3,3个月后股价变动上行乘数
u=e^[0.3x(3/12)^0.5]=e^(0.3x0.25^0.5)=e^(0.3x0.5)=1.1618,表示3个月后股价可能上升0.1618;
3、股价变动下行乘数d=1/u=1/1.1618=0.8607,表示3个月后股价可能下降0.1393;
4、上行股价Su=股票现价Sx上行乘数u=50x1.1618=58.09;
5、下行股价Sd=股票现价Sx下行乘数d=50x0.8607=43.035;
6、股价上行时期权到期日价值Cu=0;
7、股价下行时期权到期日价值Cd=执行价格-下行股价=50-43.035=6.965;
8、套期保值比率H=(Cd-Cu)/(Su-Sd)=(6.965-0)/(58.09-43.035)=0.4626;
9、期权价值C=(HSu-Cu)/(1+r)-HS=(0.4626x58.09-0)/(1+2.5%)-0.4626x50=3.09。
(10)欧式看跌期权定价扩展阅读:
期权价值影响因素
1、标的资产市场价格
在其他条件一定的情形下,看涨期权的价值随着标的资产市场价格的上升而上升;看跌期权的价值随着标的资产市场价格的上升而下降。
2、执行价格
在其他条件一定的情形下,看涨期权的执行价格越高,期权的价值越小;看跌期权的执行价格越高,期权的价值越大。
3、到期期限
对于美式期权而言,无论是看跌期权还是看涨期权,在其他条件一定的情形下,到期时间越长,期权的到期日价值就越高。