有的杠杆能
金融里的杠杆,就是指负债。
比如一个企业,自有资金10亿元,贷款和应付账款等各类欠款是90亿元,那么总资产就是100亿元,我们说,他的财务杠杆就是总资产÷自有资金=10倍。
可见,杠杆越高,企业经营的风险越大。如果一个企业不借钱,都用企业主自己的钱来经营,那么他的杠杆就是零。
再比如,买一份标准的期货合约,面值是1万元,需要的保证金是1000元,理论上,投资者需要有一万元在这儿放着,预备合约的交割,但是如果他是个投机者,并且对趋势看得很准,他就可以把多余的9000元再去买9份合约,就相当于用一万元撬动了十万元的期货合约,这种以小搏大的放大效果,就叫做”杠杆“,意即,以1倍资金,撬动10倍资产,这里的杠杆率就是10。
供参考,希望对你有帮助
❷ 有人说,使用杠杆,一定能省力.这句话对吗
原理简介杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1 L1=F2L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。古希腊科学家阿基米德有这样一句流传千古的名言:“假如给我一个支点,我就能把地球挪动!”这句话有着严格的科学根据. 阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布…… 正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。概念分析在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。 杠杆分类杠杆可分为省力杠杆、费力杠杆和等臂杠杆。这几类杠杆有如下特征:1.省力杠杆:L1>L2, F1<F2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。2.费力杠杆: L1<L2, F1>F2,费力、省距离,如钓鱼竿、镊子等。3.等臂杠杆: L1=L2, F1=F2,既不省力也不费力,又不多移动距离,如天平、定滑轮等。
❸ 股市可以有多大的杠杆呢
现在正规渠道使用杠杆的话最多只能做到杠杆比例1:1哈。
希望我的回答能够帮助到你,望采纳,谢谢。
❹ 使用杠杆时,有的可以( ),有的可以( ),有的( )
使用杠杆时,有的可以(省力
),有的可以(省距离
),有的(可以改变力的方向
)
希望对你有所帮助~~~~~~~~~~
❺ 哪位物理学家说:有一根杠杆,能撬起地球
给我一个支点、我就能举起地球!”
二千一百九十年前,在古希腊西西里岛的叙拉古国,出现一位伟大的物理学家。他叫阿基米德(公元前287——212年)。阿基米德的一生勤奋好学,专心一志地献身于科学,忠于祖国,受到人们的尊敬与赞扬。阿基米德曾发现杠杆定律和以他的名字命名的阿基米德定律。并利用这些定律设计了多种机械,为人民、为祖国服务。关于他生平的详细情况,已无法考证。但关于他发明创造和保卫祖国的故事,却流传至今。
杠杆定律的确立
人们从远古时代起就会使用杠杆,并且懂得巧妙地运用杠杆。在埃及造金字塔的时候,奴隶们就利用杠杆把沉重的石块往上撬。 造船工人用杠杆在船上架设桅杆。人们用汲水吊杆从井里取水,等等。但是,杠杆为什么能做到这一点呢?在阿基米德发现杠杆定律之前,是没有人能够解释的。当时,有的哲学家在谈到这个问题的时候,一口咬定说,这是“魔性”。阿基米德却不承认是什么“魔性”。他懂得,自然界里的种种现象,总有自然的原因来解释。杠杆作用也有它自然的原因,他决心把它解释出来。阿基米德经过反复地观察、实验和计算,终于确立了杠杆的平衡定律。就是,“力臂和力(重量)成反比例。”换句话说,就是:小重量是大重量的多少分之一重,长力臂就应当是短力臂的多少倍长。阿基米德确立了杠杆定律后,就推断说,只要能够取得适当的杠杆长度,任何重量都可以用很小的力量举起来。据说他曾经说过这样的豪言壮语:
“给我一个支点、我就能举起地球!”
叙拉古国王听说后,对阿基米德说:“凭着宙斯(宙斯是希腊神话中的众神之王,主管天、雷、电和雨)起誓,你说的事真是稀奇古怪,阿基米德!”阿基米德向国王解释了杠杆的特性以后,国王说:“到哪里去找一个支点,把地球举起来呢?”
“这样的支点是没有的。”阿基米德回答说。
“那么,要叫人相信力学的神力就不可能了?” 国王说。
“不,不,你误会了,陛下,我能够给你举出别的例子。”阿基米德说。
国王说:“你太吹牛了!你且替我推动一样重的东西,看你讲的话怎样。”当时国王正有一个困难的问题,就是他替埃及王造了一艘很大的船。船造好后,动员了叙拉古全城的人,也没法把它推下水。阿基米德说:“好吧,我替你来推这一只船吧。”
阿基米德离开国王后,就利用杠杆和滑轮的子理,设计、制造了一套巧妙的机械。把一切都准备好后,阿基米德请国王来观看大船下水。他把一根粗绳的末端交给国王,让国王轻轻拉一下。顿时,那艘大船慢慢移动起来,顺利地滑下了水里,国王和大臣们看到 这样的奇迹,好象看耍魔术一样,惊奇不已!于是,国王信服了阿基米德,并向全国发出布告:“从此以后,无论阿基米德讲什么,都要相信他……”
❻ 现在的股票杠杆最高能够有多少倍的杠杆
你好,融资融券是1倍的,场外配资是1-10倍,但配资公司是要根据用户的操作实力来决定的。
❼ 求职中受挫时,可以有的杠杆解有哪些
财务管理中的杠杆效应,主要表现为:由于特定费用(如固定成本或固定财务费版用)权的存在而导致的,当某一财务变量以较小幅度变动时,另一相关财务变量会以较大幅度变动。合理运用杠杆原理,有助于合理规避风险,提高资金营运效率。财务管理中的杠杆效应有三种形式,即经营杠杆、财务杠杆、复合杠杆
❽ 人体中的杠杆有哪些
在人体中,骨在肌拉力作用下围绕关节轴转动,它的作用和杠杆相同,称为骨杠杆版。人体的骨杠杆权运动有三种形式:
1.平衡杠杆:支点在力的作用点和重力作用点之间。如颅进行的仰头和俯首运动。
2.省力杠杆:重力作用点在支点和力的作用点之间。如行走时提起足跟的动作,这种杠杆可以克服较大的体重。
3.速度杠杆:力的作用点在重力作用点和支点之间。如肘关节的活动,这种活动必须以较大的力才能克服较小的重力,但运动速度和范围很大。
❾ 生活中有哪些省力杠杆和费力杠杆还有等臂杠杆~
1、省力杠杆:瓶器、榨汁器、胡桃钳、撬棍、扳手、钳子、拔钉器、开瓶器、铁皮剪刀、钢丝钳、指甲剪、汽车方向盘等。
2、等臂杠杆:天平,定滑轮,跷跷板、衣裳挂、挂钟等。
3、省力杠杆由力的作用线到支点的距离叫做力臂。根据公式F1L1=F2L2可得,力臂越长力就越小。省力杠杆,顾名思义,其动力臂较长,动力较小,所以省力。但是通常省力杠杆省了力气会相应的费距离。等臂杠杆是杠杆的一种,动力臂和阻力臂长度相同,既不省力也不费力,既不省距离也不费距离。
(9)有的杠杆能扩展阅读:
1、省力杠杆
省力杠杆动力臂大于阻力臂,平衡时动力小于阻力。虽然省力,但是费了距离。<也就是说当力臂的长度(以支点O为分界线)大于阻力臂的长度时,这便是省力杠杆。
2、等臂杠杆
在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。
❿ 生活中的杠杆用途有哪些
一、分类
第一类:支点在动力点和阻力点的中间。称为第一类杠杆。既可能省力的,也可能费力的,主要由支点的位置决定,或者说由臂的长度决定。动力臂与阻力臂长度一致,所以这类杠杆是等臂杠杆。例:跷跷板、天平等。
第二类:阻力点在动力点和支点中间。称为第二类杠杆。由于动力臂总是大于阻力臂,所以它是省力杠杆。例:坚果夹子,门,钉书机,跳水板,扳手,开(啤酒)瓶器,(运水泥、砖的)手推车。
第三类:动力点在支点和阻力点之间。称为第三类杠杆。特点是动力臂比阻力臂短,所以这类杠杆是费力杠杆,然而能够节省距离。例:镊子,手臂,鱼竿,皮划艇的桨,下颚,锹、扫帚、球棍,理发剪刀等以一手为支点,一手为动力的器械。
另外,像轮轴这类的工具也属于一种变形杠杆。就拿最简单、相似于第一类杠杆的定滑轮来介绍,滑轮轴心好比支点,两端物体的拉力好比杠杆的两端施力,而如果滑轮是一个完美的圆,施力臂和阻力臂皆将是圆的半径。
二、生活中的杠杆
费力杠杆例如:理发剪刀、镊子、钓鱼竿……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点一样远,如定滑轮和天平,就不省力也不费力,只是改变了用力的方向。
省力杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)剪纸板时,花剪较省力但是费时;而洋裁剪则费力但是省时。